Classification of metric measure spaces and their ends using p-harmonic functions
نویسندگان
چکیده
By seeing whether a Liouville type theorem holds for positive, bounded, and/or finite energy $p$-harmonic and $p$-quasiharmonic functions, we classify proper metric spaces equipped with locally doubling measure supporting local $p$-Poincar\'e inequality. Similar classifications have earlier been obtained Riemann surfaces Riemannian manifolds. We also study the inclusions between these classes of spaces, their relationship to $p$-hyperbolicity space its ends. In particular, characterize that carry nonconstant functions as having at least two well-separated $p$-hyperbolic sequences. show every such $X$ has function $f \notin L^p(X) + \mathbb{R} $ $p$-energy.
منابع مشابه
DIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملFunctions on Localized BMO Spaces over Doubling Metric Measure Spaces
Let X be a doubling metric measure space. In this paper, the authors introduce the notions of Property (M̃) and Property (P ) of X , prove that Property (M̃) implies Property (P ) and give some equivalent characterizations of Property (M̃) and Property (P ). If X has Property (P ), the authors then establish the boundedness of the Lusin-area function, which is defined via kernels modeled on the se...
متن کاملSobolev and Bounded Variation Functions on Metric Measure Spaces
Contents Chapter 1. Introduction 1 1. History 1 2. Motivations 3 3. Examples of metric measure spaces 4 Chapter 2. H-Sobolev space and first tools of differential calculus 9 1. Relaxed slope and Cheeger energy 9 2. Elements of differential calculus 11 3. Reminders of convex analysis 14 4. Laplacian and integration by parts formula 15 5. Heat flow in (X, d, m) 16 Chapter 3. The Lagrangian (Beppo...
متن کاملMarked Metric Measure Spaces
A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...
متن کاملHarmonic Functions on Alexandrov Spaces and Their Applications
The main result can be stated roughly as follows: Let M be an Alexandrov space, Ω ⊂M an open domain and f : Ω→ R a harmonic function. Then f is Lipschitz on any compact subset of Ω. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Fennici Mathematici
سال: 2022
ISSN: ['2737-0690', '2737-114X']
DOI: https://doi.org/10.54330/afm.120618